September 8, 2013 — Mercury — a common industrial toxin — is carried through the atmosphere before settling on the ocean and entering the marine food web.
Now, exciting new research from the University of Michigan and the University of Hawaii at Manoa School of Ocean and Earth Science and Technology (SOEST) combines biogeochemistry and direct marine ecology observations to show how the global mercury cycle is colliding with ocean fish — and the human seafood supply — at different depths in the water.
Mercury accumulation in the ocean fish we eat tends to take place at deeper depths, scientists found, in part because of photochemical reactions that break down organic mercury in well-lit surface waters. More of this accessible organic mercury is also being generated in deeper waters.
“A few years ago, we published work that showed that predatory fish that feed at deeper depths in the open ocean, like opah and swordfish, have higher mercury concentrations than those that feed in waters near the surface, like mahi-mahi and yellowfin tuna,” said Brian Popp, professor of geology and geophysics at UH Manoa, and a co-author of a new paper scheduled for online publication August 25, 2013, in the scientific journal Nature Geoscience. “We knew this was true, but we didn’t know why.”
“We knew that organic and inorganic mercury dissolved in seawater has a nutrient-like profile, with lower concentrations at the surface and higher concentrations at depth,” said Anela Choy, a PhD candidate in oceanography at UH Manoa. “We saw it in the water, and we saw it in the fish. But we couldn’t explain the gradient we saw, nor did we know exactly where and how the bioavailable organic mercury was entering the marine food web.”
Bacteria in the oceans change atmospheric mercury into the organic monomethylmercury form that can accumulate in animal tissue. Large predatory fish contain high levels of methylmercury, in part, because they eat lots of smaller, mercury-containing fish.
Read the full story at Hawaii 24/7