October 31, 2013 — Recent studies from two research teams at the Polytechnic Institute of New York University (NYU-Poly) demonstrate how underwater robots can be used to understand and influence the complex swimming behaviors of schooling fish.
The teams, led by Maurizio Porfiri, associate professor of mechanical and aerospace engineering at NYU-Poly, published two separate papers in the journal PLOS ONE.
These studies are the latest in a significant body of research by Porfiri and collaborators utilizing robots, specifically robotic fish, to impact collective animal behavior. In collaboration with doctoral candidate Paul Phamduy and NYU-Poly research scholar Giovanni Polverino, Porfiri designed an experiment to examine the interplay of visual cues and flow cues—changes in the water current as a result of tail-beat frequency—in triggering a live golden shiner fish to either approach or ignore a robotic fish.
They designed and built two robotic fish analogous to live golden shiners in aspect ratio, size, shape, and locomotion pattern. However, one was painted with the natural colors of the golden shiner, the other with a palette not seen in the species. The researchers affixed each robot to the inside of a water tunnel, introduced a live golden shiner fish, and observed its interactions with the robot. While the robot’s position remained static, the researchers experimented with several different tail-beat frequencies.